
Optimal Photo Mosaics:
An Instance of the Assignment Problem

Tobias Weber
tm.weber@stud.unibas.ch

Fall 2023

Abstract

A photo mosaic is a picture that itself consists of many smaller pictures, called tiles. These tiles are carefully
arranged in a rectangular grid such that a single large picture emerges. An optimal mosaic for a given set of
tiles is a photo mosaic that resembles a target picture as closely as possible. This is determined by a distance
function. Previous research has primarily focused on approximate solutions that scale well with large problem
instances. In contrast, we present an algorithm that generates the optimal mosaic by solving the corresponding
assignment problem. We additionally construct a family of distance functions based on downscaling tiles. A
series of experiments were conducted to evaluate the algorithm and distance functions. The results suggest that
realistic problem instances can be solved in a matter of seconds. We conclude that generating optimal photo
mosaics should no longer be considered infeasible.

1 Introduction

The widespread adoption of smartphones with capa-
ble cameras has made digital photographs ubiquitous.
Together with the availability of affordable storage,
this results in an ever-expanding collection of photos.
A popular technique that takes advantage of this abun-
dance of photos are photo collages. A photo collage
combines multiple, usually related photos in a single
picture. This is achieved by reducing the size of each
photo, possibly cropping it and arranging them in a
visually appealing manner.

A special category of photo collages are photo mo-
saics. A traditional mosaic is made up of small colored
tiles, which are arranged to appear as a single larger
picture. Analogously, a photo mosaic is a picture
which is itself made up of many small pictures, called
tiles. Photo mosaics are not a recent invention and
were originally created by hand. With the advent of
computers, algorithms have been developed to pro-
duce photo mosaics for a given set of tiles and target
picture. Today, photo mosaics are widespread. They
can be found on magazine covers and posters and are
popular birthday or wedding gifts.

In this paper, we discuss a simple algorithm for
creating optimal photo mosaics. This is achieved by
reducing the problem to the linear assignment problem,
a fundamental combinatorial optimization problem.
Creating optimal photo mosaics has mostly been ig-
nored by research because of its high computational
complexity. Instead, algorithms and heuristics were
developed to approximate the optimal mosaic. While
these have been very successful, they are often non-

trivial to implement and use complex data structures.
It would be ideal if we could opt for the simpler algo-
rithm which also yields superior results. We pose the
hypothesis that calculating the optimal solution has
become feasible for typical problem instances.

A frequently used simplification of the problem
first computes the average color of each tile and dis-
cards the color information of individual pixels. This
is equivalent to downscaling the tile to just a single
pixel. Using the presented algorithm, we conduct ex-
periments to investigate the impact on mosaic quality
when tiles are downscaled to different resolutions.

In the following section, we briefly review related
work. Section 3 introduces our optimal algorithm
for photo mosaics. The evaluation and its results are
presented in Section 4. Finally, we discuss the results
in Section 5 and potential future work is outlined in
Section 6.

2 Related Work

One of the earliest scientific papers concerning
photo mosaics was published by Finkelstein and
Range [1] in 1998. It focuses on adjusting the col-
ors of tiles after the mosaic has been created. The
target picture is thus further emphasized. This is done
by generalizing traditional halftoning techniques and
applying a “shift-and-scale" rule.

Kim and Pellacini [2] describe the Jigsaw Image Mo-
saic algorithm for creating mosaics out of arbitrarily-
shaped tiles. For this, the target picture is divided
into single-colored containers. For pictures that are

made up of clearly discernible shapes it leads to great
results, but it is not suited for arbitrary pictures.

A randomized iterative improvement algorithm
for photo mosaics is proposed by Narasimhan and
Satheesh [3]. It begins initially with an arbitrary feasi-
ble mosaic. Subsequent iterations swap random tiles
or replace them with unused ones to find a better mo-
saic. This approach is also well suited if a tile may be
repeated up to t times.

Battiato, Blasi, Farinella, et al. [4] give a compre-
hensive overview about existing techniques for digi-
tal mosaic creation. In particular, they compare the
computational complexity of different photo mosaic
algorithms. By using the Antipole Tree Data Structure,
Blasi, Gallo, and Petralia [5] achieve the best computa-
tional complexity of just O(n log(m)), where n is the
number of target picture pixels and m the size of the
tile set. A drawback of this approach is that it may
result in the repetition of tiles.

3 The Optimal Mosaic Problem

We open this section by defining the problem of
finding an optimal mosaic. The given input is a set
of tiles T = {Tj} for j = 1, 2, ..., m and target picture
P with desired number of tiles n (with n ≤ m). The
target picture P is subdivided into a regular grid of n
square blocks1 Pi, which are contained in a set we also
call P for simplicity. Additionally, we define a distance
function

d : P × T 7→ R≥0.

It measures the distance between each possible pair
of block and tile. The selection of d has a substantial
impact on the perceived quality of the optimal mosaic
and will be discussed in Section 3.2.

A mosaic is a picture with the same dimensions
as P. It is made up of n blocks, where each block
corresponds to a unique tile from the set of tiles2. We
thus define a mosaic to be an injective function that
assigns each block of P to a tile of T. An optimal mosaic
Q for a given distance function d is a mosaic which
minimizes the total distance

DQ = ∑
p∈P

d(p, Q(p)).

3.1 Solving the Problem

The key insight for solving the optimal mosaic prob-
lem lies in recognizing that it is essentially an instance

1 We assume that this subdivision is always possible. This might
require cropping P and adjusting n to get blocks with integer
dimensions.

2 If the dimensions of a tile are not equal to the dimensions of a
block, it can simply be rescaled. For simplicity, we assume that
the dimensions are always equal.

of the linear assignment problem, short LAP. It can be
defined as finding the best assignment (lowest total
cost) of elements of a set A to elements of a set B. The
cost for a single assignment is stored in a |A| × |B| cost
matrix C. We find that the set of blocks P corresponds
to A, the set of tiles T corresponds to B and the entries
of the cost matrix can be defined as Ci,j = d(Pi, Tj).
This leads us to the following algorithm for the opti-
mal mosaic problem:

Algorithm 1 Solving the Optimal Mosaic Problem

Input: Target picture Ptarget, set of tiles T with size
m, number of blocks n
Output: Optimal mosaic Q

Step 1: Subdivide Ptarget into n blocks and store
them in set P.
Step 2: Calculate the cost matrix C with
Ci,j := d(Pi, Tj) using the distance function d.
Step 3: Solve the LAP for input C and store the
optimal assignment in variable X.
Step 4: Replace the blocks of Ptarget with the tiles in
T given by X to build Q.
Step 5: Return Q.

As the cost matrix C is constructed explicitly, Algo-
rithm 1 has a storage complexity of O(nm). Step 3 is
the dominant part for the computational complexity.
The LAP can be solved with the Hungarian method
proposed by Kuhn [6]. An improved version is the
Jonker-Volgenant algorithm [7]. It has a computational
complexity of O(n2m) for n < m.

3.2 Distance Functions

Up to this point, we have not yet stated an imple-
mentation for the distance function d. The choice of d
can significantly alter the appearance of the resulting
mosaic. We assume that blocks and tiles are repre-
sented as images in the RGB color space.

One way to define d is to first map each tile (and
block) to a k-dimensional feature vector. Any distance
measure for vectors can then be used, for instance the
Euclidean distance or the cosine measure.

Ancient Roman mosaics used colored stones as
tiles. We can mimic this simple approach by calcu-
lating the average color for tiles. This results in 3-
dimensional feature vectors, one dimension per color
channel3. While this is very cheap to compute, it also
disregards the structure in tiles. The approach can be

3 We operate under the assumption that the (Euclidean) distance
in the RGB color space matches human perception of color dis-
tance ∆E. Many better measures based on uniform color spaces
have been developed. A good compromise between complexity
and accuracy is the Lab color space. The CIEDE2000 formula [8] is
based on it and has become the standard measure for ∆E.

2

improved by dividing each tile into a grid of r × r sub-
tiles and calculating the average color per subtile. The
dimension of the resulting feature vector is k = 3 · r2.
We can increase r up to the point where it is equal to
the side length of a tile:

Figure 1: Different values of r for a tile of the CIFAR dataset.

This approach has been employed by Lee [9] as
a cheap way to improve mosaic quality. Other fea-
tures are also feasible. Finkelstein and Range [1] use
wavelets-based features for tile matching, which were
introduced by Jacobs, Finkelstein, and Salesin [10].

4 Evaluation

In this section, we compare the runtime and mosaic
quality for different distance functions and problem
instances.

Solving the optimal mosaic problem with Algo-
rithm 1 is only feasible if its runtime for typical prob-
lem instances is acceptable. We focus on the use case
where the goal is to create a single photo mosaic for
a given target picture and set of tiles. A runtime
of several seconds up to a few minutes is therefore
considered acceptable. A visually pleasing mosaic con-
sists of enough tiles for the target picture to emerge.
If too many tiles are used, the individual tiles are no
longer discernible. In practical scenarios, we thus an-
ticipate values for n within the lower thousands. The
size m of the set of available tiles is typically around a
multiple of n in the single-digit range 4.

4 Otherwise, m could first be reduced by removing tiles; either at
random, or by taking the target picture into account.

4.1 Experiment Setup

While the generated mosaics are optimal, a measure
that allows us to compare the effect of different dis-
tance functions is nonetheless valuable. We define the
error of a mosaic Q for a target picture P as the mean
of squared differences between corresponding pixel
values of Q and P.

The algorithm is implemented in Python and uses
the SciPy LAP solver5. For the experiments, we used
the family of distance functions described in Sec-
tion 3.2 with the Euclidean distance measure and
k = 3 · r2 features. The target picture P was given
by Figure 2. For the set of tiles T, a subset of the
CIFAR-100 dataset [11] was used. The experiments
were conducted on an Intel Core i7-13700k CPU.

Figure 2: The target picture P for the experiments.
Source: Andrew Pons on unsplash.com.

Table 1: Overview of the parameters used in the experiments.

Parameters

Experiment n m r

A 1 536 15 000 variable
B 1 536 variable 3
C variable 15 000 3

Experiment A investigated the effect of r on the
runtime and error. In experiment B, we varied the
number of tiles m and the runtime was measured.
Analogously, we varied the number of blocks n in

5 scipy.optimize.linear_sum_assignment

3

https://unsplash.com
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html

experiment C and kept the other parameters constant.
Together, the results of these experiments allow us to
estimate for what problem size the algorithm becomes
infeasible. The parameter values for each experiment
can be found in Table 1.

4.2 Results

The outcomes of experiment A are shown in Fig-
ure 3 and Figure 4. We see that larger r result in a
quadratic increase of the runtime. This corresponds
to a runtime that is proportional to the number of
features k. In practice, small values for r are sufficient.
When looking at the error shown in Figure 4 we see
that the error converges quickly. A value of r = 3
already yields very good results. This can also be
observed visually in Figure 7.

0 2 4 6 8 10 12 14 16
r

0

10

20

30

40

50

60

Ti
m

e
(s

)

Figure 3: The measured runtime in experiment A for varying r.

0 2 4 6 8 10 12 14 16
r

55

60

65

70

75

M
ea

n
Sq

ua
re

d
Er

ro
r

Figure 4: The measured error in experiment A for varying r.

Figure 5 depicts the results of experiment B. They
suggest a linear relationship between m and the algo-
rithm runtime. This is consistent with the theoretical
computational complexity of O(n2m). Even for large
sets of tiles, the algorithm finishes in a matter of sec-
onds.

In Figure 6 the measurements of experiment C are
shown. As expected, the runtime appears to increase
with the square of n. For the measured problem in-
stances, the algorithm still terminates in a reasonable
amount of time. However, for even larger n (> 10 000)
the high runtime becomes an issue.

0 10000 20000 30000 40000 50000
m

0

2

4

6

8

10

Ti
m

e
(s

)

Figure 5: The measured runtime in experiment B for varying m.

0 2000 4000 6000 8000
n

0

20

40

60

80

Ti
m

e
(s

)

Figure 6: The measured runtime in experiment C for varying n.

5 Conclusion

Having presented the algorithm and performed the
evaluation, we proceed to analyze the implications of
the evaluation results and draw a conclusion.

From experiment A we learned what distance func-
tions are suitable for constructing mosaics of high
quality, while minimizing its impact on performance.
A value of r = 3 can already notably reduce the error
without resulting in a significantly higher runtime. A
value of r = 6 (resulting in k = 108 features) is suffi-
cient for all practical purposes, as any additional gain
in quality becomes insignificant. This result should
also hold for general distance functions based on fea-
ture vectors. Using vectors with hundreds of dimen-
sions is unnecessary and leads to a considerable com-
putational overhead.

In the past, the cubic computational complexity of
Algorithm 1 has rendered this approach infeasible,
and it was not further discussed in scientific literature.
Contrary to that, the results of experiment B and C
suggest that the presented algorithm is fast enough
for most practical purposes, even on off-the-shelf con-
sumer hardware. We assume that this is a consequence
of the development of more efficient processors in the
last years.

A variation of the optimal mosaic problem allows
tiles to be repeated up to t times in the mosaic. For
this problem, approximate solvers maintain an advan-

4

Figure 7: Some of the resulting mosaics from experiment A (n = 1 536). The perceived quality for r = 3 and r = 16 is very similar.

tage over our approach. We can solve the problem
by adding t copies of each tile to the set of tiles T.
This increases m and therefore the runtime by a factor
of t. Most approximate algorithms can leverage the
repetition more efficiently.

We conclude that seeking an optimal solution for
the mosaic problem is a reasonable approach. For typ-
ical problem sizes the presented algorithm terminates
in a matter of seconds. Choosing a suitable distance
function has a significant impact on performance and
visual quality. The proposed distance function, which
corresponds to downscaling each tile to a resolution
of 3 by 3 pixels, resulted in mosaics with a high level
of detail. This allows us to recognize features of the
target picture in the mosaic that are smaller than indi-
vidual tiles. With traditional monochrome tiles, this
effect would not be visible. This adds a compelling
element to the charm of photo mosaics.

6 Future Work

In the scope of this research project, we only evalu-
ated the algorithm performance in isolation. A more
thorough analysis could clarify whether the lower run-
time of suboptimal algorithms is worth the decrease
in quality.

Another promising topic for future work is to fur-
ther explore various distance functions. It would also
be interesting to see the effect of using different color
spaces for measuring color difference.

Our proposed method can easily be generalized to
tiles with a fixed non-square aspect ratio. A harder
problem would be to allow tiles of different sizes based
on the level of detail in the target picture. Blasi, Gallo,

and Petralia [5] have proposed such mosaics under
the name QT-Photomosaics.

5

References

[1] A. Finkelstein and M. Range, “Image mosaics,”
in Electronic Publishing, Artistic Imaging, and Digi-
tal Typography, Springer Berlin Heidelberg, 1998,
pp. 11–22. doi: 10.1007/bfb0053259.

[2] J. Kim and F. Pellacini, “Jigsaw image mosaics,”
in Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques, ser. SIG-
GRAPH ’02, San Antonio, Texas: Association for
Computing Machinery, Jul. 2002, pp. 657–664,
isbn: 1581135211. doi: 10.1145/566570.566633.

[3] H. Narasimhan and S. Satheesh, “A random-
ized iterative improvement algorithm for pho-
tomosaic generation,” 2009 World Congress on
Nature & Biologically Inspired Computing (NaBIC),
pp. 777–781, Dec. 2009. doi: 10.1109/NABIC.
2009.5393882.

[4] S. Battiato, G. di Blasi, G. M. Farinella, and
G. Gallo, “Digital mosaic frameworks - an
overview,” Computer Graphics Forum, vol. 26,
no. 4, pp. 794–812, Jun. 2007. doi: 10.1111/
j.1467-8659.2007.01021.x.

[5] G. di Blasi, G. Gallo, and M. P. Petralia,
“Smart ideas for photomosaic rendering,” in
Fourth Eurographics Italian Chapter Conference
2006, Eurographics, 2006, pp. 267–272. doi:
10 . 2312 / LocalChapterEvents / ItalChap /
ItalianChapConf2006/267-271.

[6] H. W. Kuhn, “The hungarian method for the
assignment problem,” Naval Research Logistics
Quarterly, vol. 2, no. 1-2, pp. 83–97, Mar. 1955.
doi: 10.1002/nav.3800020109.

[7] R. Jonker and A. Volgenant, “A shortest aug-
menting path algorithm for dense and sparse
linear assignment problems,” Computing, vol. 38,
no. 4, pp. 325–340, 1987. doi: 10 . 1007 /
BF02278710.

[8] M. R. Luo, G. Cui, and B. Rigg, “The develop-
ment of the CIE 2000 colour-difference formula:
CIEDE2000,” Color Research & Application, vol. 26,
no. 5, pp. 340–350, Aug. 2001. doi: 10.1002/col.
1049.

[9] H.-Y. Lee, “Generation of photo-mosaic images
through block matching and color adjustment,”
International Journal of Computer and Information
Engineering, vol. 8, no. 3, pp. 457–460, 2014. doi:
10.5281/zenodo.1337092.

[10] C. E. Jacobs, A. Finkelstein, and D. H. Salesin,
“Fast multiresolution image querying,” in Pro-
ceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, ser. SIG-
GRAPH ’95, New York, NY, USA: Association

for Computing Machinery, Sep. 1995, pp. 277–
286, isbn: 0897917014. doi: 10.1145/218380.
218454.

[11] A. Krizhevsky, G. Hinton, et al., “Learning
multiple layers of features from tiny images,”
2009. [Online]. Available: https : / / api .
semanticscholar.org/CorpusID:18268744.

Appendix

On the next pages, we present additional mosaics
that were generated by the presented algorithm. The
tiles are again sourced from the CIFAR-100 dataset.

6

https://doi.org/10.1007/bfb0053259
https://doi.org/10.1145/566570.566633
https://doi.org/10.1109/NABIC.2009.5393882
https://doi.org/10.1109/NABIC.2009.5393882
https://doi.org/10.1111/j.1467-8659.2007.01021.x
https://doi.org/10.1111/j.1467-8659.2007.01021.x
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2006/267-271
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2006/267-271
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1007/BF02278710
https://doi.org/10.1007/BF02278710
https://doi.org/10.1002/col.1049
https://doi.org/10.1002/col.1049
https://doi.org/10.5281/zenodo.1337092
https://doi.org/10.1145/218380.218454
https://doi.org/10.1145/218380.218454
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

Figure 8: Mosaic of a horse (n = 486, r = 5).
Source of target picture: Helena Lopes on https://unsplash.com.

Figure 9: Mosaic of a goldfish in an aquarium (n = 1488, r = 5).
Source of target picture: redcharlie on https://unsplash.com.

7

https://unsplash.com
https://unsplash.com

Figure 10: Mosaic of an African elephant (n = 3927, r = 5).
Source of target picture: Delbert Pagayona on https://unsplash.com.

8

https://unsplash.com

	Introduction
	Related Work
	The Optimal Mosaic Problem
	Solving the Problem
	Distance Functions

	Evaluation
	Experiment Setup
	Results

	Conclusion
	Future Work

